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Abstract. Ballistic and dissipative electron transport through a two-dimensional geometry is
studied in the de Broglie–Bohm quantal trajectory model. The dissipative effect, incorporated to
simulate inelastic scattering, is introduced via an imaginary potential term in the Hamiltonian.
The relation between the conductance and the local behaviour of the quantal trajectories is
discussed. The vortex-like structure of the de Broglie–Bohm trajectories in the vicinity of
wavefunction nodes is studied.

1. Introduction

The progress in modern semiconductor technology has made it possible to design
nanostructure devices where mobile electrons are confined in one or several directions. For
example, a quantum well can be created at a GaAs/AlGaAs interface, trapping the electrons
in a sheet with a thickness of the order of 100Å. The confinement causes a quantization
of the energy levels in the direction perpendicular to the interface, and a (quasi-) two-
dimensional electron gas is formed. At low temperatures, usually only the lowest-energy
subband is populated. In the plane of the interface it is then possible to achieve mean free
paths of the order of micrometres, which means that the electrons move ballistically [1–3].

By applying lithographic techniques, e.g., split gates, it is possible to reduce the
dimensionality even further and create (quasi-) one-dimensional channels or (quasi-) zero-
dimensional dots. When the length of the channel is less than the mean free path, the
electrons maintain their phase coherence through the system. Experimentally, it was
discovered independently by Wharamet al [4] and van Weeset al [5] that the conductance
through a narrow channel connecting two reservoirs is quantized asG = 2e2N/h, where
N is the number of occupied one-dimensional subbands in the channel.

The relatively large size of the nanostructures implies that it is sometimes possible
to describe the electrons using classical or semiclassical trajectories (see e.g. [6]). These
approaches are useful for qualitative studies while quantitative results should be used with
some caution since (semi-) classical models might be too simple to accurately describe the
system. To overcome this, while still retaining the trajectory concept, one may use the
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de Broglie–Bohm model [7–10], in which the trajectories are directly determined by the
Schr̈odinger solutionψ .

In this paper we analyse the de Broglie–Bohm quantal trajectories in a quantum dot. The
aim is to provide a deeper understanding of the global properties, such as the conductance
through the dot, by adopting the view that these properties are built up from individual
quantum processes. In particular we focus on the vortex-like structure of the trajectories in
the vicinity of wavefunction nodes. Furthermore, we study the effects of inelastic scattering
introduced via an imaginary potential term in the Hamiltonian. Although it is usually
neglected (which is a reasonable approximation when the mean free path is longer than
the size of the structure), some inelastic scattering always takes place, and a more realistic
treatment of a nanostructure should take this into account [11, 12]. We demonstrate that the
de Broglie–Bohm trajectories provide additional physical insights into inelastic scattering,
at least in a qualitative way, within the imaginary potential model.

The layout of the paper is as follows. In section 2 we give a short introduction to the
de Broglie–Bohm model and how to include inelastic scattering. Section 3 describes the
technique for solving the Schrödinger equation, and the results of the numerical calculations
are discussed in section 4. Finally, section 5 contains the conclusions.

2. The de Broglie–Bohm model

Let us first recall the elements of the de Broglie–Bohm model [7–10]. A quantal system
is assumed to consist of a wave and a particle. The wave is described by the quantum
mechanical wavefunctionψ(x, t), which is a solution of the time-dependent Schrödinger
equation

− h̄
2

2m
∇2ψ + Vψ = i h̄

∂

∂t
ψ (1)

whereV = V (x) is the classical potential andm is the mass of the particle. (We consider
only one-particle systems and vanishing vector potential.) The particle follows a trajectory
X(t) given by the guidance equation

mẊ = ∇Sψ(x, t)∣∣
x=X (2)

whereSψ/h̄ is the phase ofψ andρψ is the normalized probability density fulfilling the
continuity equation

∂ρψ

∂t
+∇ ·

(
ρψ
∇Sψ
m

)
= 0. (3)

The densityρψ = |ψ |2 expresses the impossibility of observing the trajectoryX(t). We
also note that the real part of the Schrödinger equation takes the form of a generalized
Hamilton–Jacobi equation:

(∇Sψ)2
2m

+ V +Qψ = −∂S
ψ

∂t
(4)

with the so-called ‘quantum potential’

Qψ = − h̄
2

2m

∇2
√
ρψ√
ρψ

(5)

accompanying the classical potentialV . From this it is possible to deduce the trajectories by
appeal to Newton’s second law with the ‘force’−∇(V +Qψ) and the initial velocity given
by (2). However, from the calculational side nothing is gained with the use of Newton’s
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equations, as the guidance equation is both sufficient and simpler to solve to obtain the
trajectories.

We emphasize that the structure given by (1) and (2) is highly non-classical. First we
note that the motion of the particle is determined only indirectly by the classical potential
through the wavefunction. Therefore there is in general no reason to expect any resemblance
between the motion determined by (2) and the solution for the corresponding classical
Newton’s equation. Indeed in the case of a free wave packet the spreading generally causes
the particle to deviate from the classical straight-line motion. Secondly the momentum is
not an independent variable as it is in classical mechanics: specifying the initial position
X(0) is sufficient to completely determine the trajectory. In other words the trajectories in
extended configuration space(x, t) cannot cross.

In this work we concentrate the analysis on stationary elastic and inelastic scattering,
where the complex-valued wavefunction is a solution of the time-independent Schrödinger
equation

− h̄
2

2m
∇2ψ + Vψ = Eψ (6)

with the energy eigenvalueE. Solutions of (6) give rise to trajectories which can
be completely analysed in configuration spacex as the velocity field∇Sψ/m is time
independent. In the elastic case the potentialV is real valued.

The inelastic scattering is simulated by a complex potential of the formVR(x)+ iVI (x).
This models the effect of the inelastic scattering as a randomization of the phase of the
scattered electron causing loss of interference. Inserting the complex potential into (6)
yields the continuity equation

∇ ·
(
ρψ
∇Sψ
m

)
= 2ρψ

h̄
(VI − ImE) (7)

and the Hamilton–Jacobi equation

(∇Sψ)2
2m

+ VR +Qψ = ReE. (8)

From (7) we obtain that ifVI is independent ofx, then it is possible to choose ImE = VI
and there is no dissipative effect on the trajectories. On the other hand if the imaginary
potential is spatially varying, the velocity∇Sψ/m, and hence also the trajectories, are
affected, as the right-hand side of (7) does not vanish. This indicates that the argument in
[13] for the rejection of an imaginary potential as a model for dissipative effects is generally
not correct. Indeed the calculations in section 4, where we make use of a spatially varying
imaginary potential (see equation (15)), support this conclusion.

The complex term also gives rise to an imaginary part of the wave vectors in a plane-
wave expansion ofψ , which in turn causes exponential damping of|ψ |2. This damping is
of the form exp(−x/l), wherel can be regarded as the inelastic mean free path (see [14]
and [15], and references therein). In effect, we have introduced a finite inelastic mean free
path in our system.

3. Solution of the Schr̈odinger equation

Our model device is shown in figure 1(a). It consists of two semi-infinite regions connected
with a cross-bar structure. If a weak potential difference is applied between the two regions,
a current will flow through the cross-bar structure. The length of the structure is of the
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Figure 1. The model device used in the calculations. The potential is zero in the two reservoirs
and in the cross-bar structure, and infinite elsewhere. (a) The confining potential in the two-
dimensional electron gas. The dotted line shows the gate structure with sharp corners. The
actual shape of the confining potential is obtained from this by replacing the sharp corners with
smooth, rounded corners. In our calculations, we have usedd = 500 Å and w = 1000 Å.
(b) The smooth corners are approximated by dividing the cross-bar into narrow strips. The
figure shows thepth strip and its neighbours. The width of the strip is denoted bywp .

order of 1000Å which is less than the mean free path of the electron gas. We first neglect
inelastic scattering so that the electrons move ballistically through the structure.

The two-dimensional cross-bar structure can be induced by a split-gate confinement
technique. It consists in depositing metallic Schottky gates on top of the structure. When
the gates are connected to a negative voltage, the regions under the gates are depleted of
electrons and the cross-bar geometry is formed.

The gate structure is separated from the electron gas by a distance of 500 to 1000Å.
This means that any sharp features in the gate structure is smoothed out in the electron
gas. We include this effect by dividing the central cross-bar structure intoN strips and
varying their widths and lengths to simulate smooth corners (see figure 1(b)). This is a
good approximation if the change in width between two adjacent strips is less than the
Fermi wavelength.

Within each strip, we assume that the confining potential for the electrons in they-
direction is an infinite square well. Self-consistent calculations, i.e. solving the Schrödinger
and Poisson equations simultaneously [16], show that the confining potential varies from
parabolic when there is little or no charge in the structure to a truncated parabola with
a flat bottom when charge accumulates in the structure. An infinite square-well potential
is therefore a rather accurate approximation when charge has accumulated in the well.
Furthermore, the use of the infinite square-well potential makes it possible to solve the
Schr̈odinger equation exactly and obtain analytical solutions, which is a great advantage
when dealing with quantal trajectories. For example, it makes it possible to zoom in on
interesting features of the trajectories. A more realistic confining potential would probably
require numerical algorithms, and this would make it difficult to study the detailed behaviour
of the trajectories.

Here we only give an outline of how to solve the Schrödinger equation. A more detailed
description is given in [17].

The device is divided into three major regions: the left-hand reservoir (x < x0), which
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acts as the source, the cross-bar structure (x0 < x < xN ), and the right-hand reservoir
(x > xN ), which acts as the drain. We solve the Schrödinger equation separately in the
three regions and match the wavefunction and its derivative at the boundaries.

In the left-hand reservoir we write the solution as

ψL
k = exp[ikx(x − x0)+ ikyy] +

∫ +∞
−∞

AL(k
′
y) exp[−ik′x(x − x0)+ ik′yy] dk′y (9)

where the first term is the incident plane wave, the second term contains the backscattered
components with probability amplitudeAL, andk = kxx̂ + ky ŷ. The componentskx and
ky are related throughE = h̄2k2/2m∗, wherem∗ is the effective mass of the electron. For
GaAs–GaAlAs,m∗ = 0.067me, whereme is the free-electron mass. The same relation
holds betweenk′x and k′y . In a similar way, we write the wavefunction in the right-hand
reservoir as

ψR
k =

∫ +∞
−∞

AR(k
′
y) exp[ik′x(x − xN)+ ik′yy] dk′y (10)

whereAR relates to the probability for transmission.
In the cross-bar structure, we write the wavefunction in thepth strip as

ψC
k,p =

∑
n

{
Bn,p exp

[
iqn,p(x − xp−1)

]+ Cn,p exp
[−iqn,p(x − xp−1)

]}
× sin

[
nπ

wp

(
y + wp

2

)]
(11)

whereB andC are expansion coefficients. The sum runs over all sub-levels with energies

En,p = h̄2(nπ/wp)
2/2m∗.

For E > En,p the longitudinal states are travelling waves with wavenumberqn,p =
[2m∗(E − En,p)/h̄2]1/2 while for E < En the solutions become exponential with iqn,p =
[2m∗(En,p − E)/h̄2]1/2, i.e. we have used the convention(−1)1/2 = −i. Using a transfer
matrix method (see [17] and references therein) we find the expansion coefficientsB, C,
AL andAR, and hence the wavefunction in all regions.

We consider the temperatureT = 0 K and an infinitesimally small potential difference
U between the source and the drain, the so-called linear response regime. This means that
only electrons in the small energy interval [EF − eU,EF ] contribute to the current through
the structure because of the Pauli principle. We can therefore write the wave vectork as

k = k(φ) = kF [cos(φ)x̂+ sin(φ)ŷ]

whereφ is the angle between the incident wave vectork and thex-axis, andkF is the
Fermi wavenumber.

The probability current densityjψk(φ) is now found from

jψk(φ) (x, y) = jψk(φ)x (x, y)x̂+ jψk(φ)y (x, y)ŷ

= − h̄

m∗

(
Re

[
ψ∗k(φ) i

∂

∂x
ψk(φ)

]
x̂+ Re

[
ψ∗k(φ) i

∂

∂y
ψk(φ)

]
ŷ

)
. (12)

The partial conductanceGpart is obtained by taking the electric current

j (φ) = 2(−e)
∫ w/2

−w/2
dy j

ψk(φ)
x (x0, y) (13)
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where the factor 2 takes care of the spin degeneracy, and then dividingj (φ) by the applied
voltageU i.e.Gpart= |j (φ)|/U . The conductance, including contributions from all incident
waves, is obtained by integrating the electric current over all incoming angles:

J =
∫ π/2

−π/2
dφ j (φ) (14)

and then dividingJ by the applied voltage:G = |J |/U .
We now take inelastic scattering into account. The effect of the inelastic scattering is

introduced phenomenologically via an imaginary potential iVI (x) added to the real-valued
confining potential. ExplicitlyVI (x) is taken to be

VI (x) =
{
−|VI | x0 < x < xN

0 x < x0 andx > xN
(15)

with |VI | a constant which is related to the inelastic scattering timeτφ through |VI | =
h̄/(2τφ). This kind of potential has previously been used for related nanostructure geometries
[12, 18]. It models scattering due to phonons, electron–electron scattering, etc, in the
channel. This choice of potential is computationally convenient and is motivated by the fact
that the electrons on average spend more time inside the structure (due to the translational
asymmetry introduced by the cross-bar structure) with an increased probability for inelastic
scattering as a result. Note also that the form (15) of the imaginary potential circumvents the
criticism in [13], asVI (x) is spatially varying. Within each strip the potential is separable,
i.e.

V (x, y) = Vx(x)+ Vy(y)− i|VI |
whereVx(x) = 0 in this case. We are thus free to let the imaginary potential i|VI | be a part
of Vx or Vy . We have chosenVx , since we therefore can retain the simple particle-in-a-box
solutions for they-direction. Thus, equation (11) remains unchanged but the definition of
q is now

qn,p = [2m∗(E − En,p + i|VI |)/h̄2]1/2 (16)

whereE andEn,p are real.
The de Broglie–Bohm trajectories for both zero and non-zero imaginary potential are

finally obtained from the guidance equation (2), where the velocity is determined through
the relation∇Sψk(φ)/m = jψk(φ)/ρψk(φ) by calculatingjψk(φ) and ρψk(φ) . Equation (2) is
integrated using fourth-order Runge–Kutta methods with an adaptive stepsize.

4. Results

For our structure, the staircase dependence of the conductance on the energy for a narrow
channel [4, 5] is replaced by a complex pattern of peaks and dips in the case of a cross-bar
structure (a detailed discussion of this can be found in [17]; see also the inset in figure 7,
later). Peaks are caused by resonant tunnelling via quasi-bound states in the centre of the
cross. In addition there are resonant and anti-resonant peaks which are due to constructive
and destructive quantum mechanical interference, respectively. Such (anti-) resonances have
also been found in a similar system using a more realistic confining potential [19]. This
implies that the main results in our work, which seem to be intimately connected to anti-
resonances as we will see, would still be valid in models using more realistic confining
potentials. We find that the flow of trajectories is smooth and laminar, except in the vicinity
of the anti-resonant dips where there is a transition from laminar to vortex flow. The
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Figure 2. Trajectories at the energy corresponding to the first resonance (EF = 0.884 36 meV).

Figure 3. Trajectories at the energyEF = 3.750 meV, approximately 0.011 meV lower than
the energy of the third anti-resonance.

complexity of the vortex flow increases with increasing energy. Figure 2 shows the laminar
flow at the first resonance (EF = 0.884 36 meV). Note in particular the formation of
trajectories which start and end at the boundary of the dot. In figure 3 the trajectories
at EF = 3.750 meV, which is approximately 0.011 meV lower than the energy of the
third anti-resonance, are shown. The initial valuesX(0) are chosen to bring out as many
interesting features as possible. Here, and also throughout the rest of this article, the
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Figure 4. The partial conductanceGpart plotted as a function of the incoming angle|φ| (in steps
of 5◦) for some energies.
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Figure 5. The centre of the vortex centred around(x, y) ≈ (−385 Å, 178 Å) in figure 3.

incoming wave vector is chosen ask = kF x̂, i.e. φ = 0. The significance of this particular
choice of incoming wave is indicated in figure 4 where the partial conductanceGpart is
plotted as a function of the angle|φ|. At energies where the flow is laminar, the partial
conductance decreases rather rapidly as|φ| is increased. For energies with vortex flow,
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the partial conductance is practically constant up to|φ| ≈ 35◦. We have limited ourself to
studying just theφ = 0 wave, since it is this particular wave which contributes most to the
conductance when the flow is laminar, and we want to study the effect on the trajectories
during the transition from laminar to vortex flow. The case of non-zero imaginary potential
will be discussed later.

Looking at the trajectories in figure 3, we see that the electrons contributing to the current
through the structure are confined to move in two narrow bundles. At the entrance and the
exit of the centre of the cross, the electrons are pushed away from the centreline by four
vortices, two of them located atx ≈ −385Å, y ≈ ±178Å and the other two atx ≈ 445Å,
y ≈ ±190 Å. As is shown in figure 5, a closer examination of the vortices reveals that
the trajectories form closed circles, demonstrating the circular behaviour close to a node
[20–23]. Saddle fixed points [21] are formed at various locations, e.g. atx ≈ −600 Å,
y = 0 Å. Note in particular that the stability of the fixed points at the centreline is forced
to alternate in thex- andy-directions due to the global structure of the flow.

-1500 -1000 -500 0 500 1000 1500

-1000

-500

0

500

1000

x  (Å)

y 
(Å

)

Figure 6. Trajectories atEF = 2.780 meV, approximately 0.024 meV lower than the energy of
the second anti-resonance.

At an energy approximately 0.024 meV lower than the energy corresponding to the
second anti-resonance (i.e.EF = 2.780 meV), we see the same general picture of
quantum vortices blocking the trajectories (see figure 6). The conductance here is very
low (G ∼ 0.03× 2e2/h), and very few trajectories pass through the structure. In general,
the reduced conductance at these anti-resonances can be viewed as being due to vortices
blocking a large portion of the channel. It is likely that this is a general feature of transport
in a nanostructure.

We now turn to a non-trivial imaginary potential iVI (x). An intuitive guess is that
the partial conductance should decrease for negative imaginary potential in the cross-bar
region. In figure 7 we have plotted the partial conductance versus|VI | for some values of
EF . We see that for energies corresponding to smooth laminar flow, the partial conductance
decreases monotonically (solid and dotted lines), as predicted. For energies corresponding
to vortex flow, i.e. close to or at the anti-resonances, the partial conductance first decreases
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Figure 7. The partial conductanceGpart versus|VI |, the value of the imaginary potential in the
cross-bar region, for some values ofEF . The inset shows the conductanceG (including the
contributions from all incident waves) at different Fermi energiesEF (in meV) atT = 0 K, and
is taken from [17].

Figure 8. The trajectories for the same energy as in figure 3, but here the imaginary potential
in the cross-bar region is non-zero and|VI | is equal to 0.1 meV. Some of the vortices have
disappeared, giving the current-carrying trajectories a straighter path through the structure.
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slightly, and this is followed by a significant increase, after which it slowly decreases. This
unexpected behaviour can be understood by looking at the trajectories (see figure 8). The
vortices have almost disappeared, giving the current-carrying trajectories a shorter and less
perturbed path through the structure. That the vortex-like trajectories disappear can, in turn,
be understood using the mean free path analogy. Since these trajectories are very long,
they exceed the mean free path and the electrons travelling on these trajectories are more
likely to be scattered than electrons travelling on shorter trajectories. The effect is that the
imaginary potential kills the vortices, giving more room for current-carrying trajectories.
Furthermore, we note that the shape of the partial conductance curve as a function of|φ|
in figure 4 takes a Gaussian-like form when the imaginary potential is non-zero, which
indicates that the flow has become more laminar also for|φ| 6= 0.

5. Conclusions

We have studied ballistic and dissipative electron transport in a two-dimensional cross-
bar structure using the de Broglie–Bohm quantal model. The inelastic scattering has been
modelled by a spatially varying imaginary potential. In the calculations of the trajectories
we have found striking and highly non-classical features such as the circular structures in
the vicinity of a node, and trajectories which start and end at the boundary of the dot. We
have also found that the partial conductance for vortex flows initially increases before it
starts to decrease when the strength of the imaginary potential increases. This at first sight
unexpected behaviour could be explained by noting that the long vortex-like trajectories are
more likely to undergo inelastic scattering and therefore are unlikely to appear. Finally, we
believe that the physical model used in this paper (the de Broglie–Bohm model with an
imaginary potential) provides new insight into the effects of scattering.
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